Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 15.090
1.
Adipocyte ; 13(1): 2339418, 2024 Dec.
Article En | MEDLINE | ID: mdl-38706095

A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10), is involved in several metabolic and inflammatory pathways. We speculated that ADAM10 plays a modulatory role in adipose tissue inflammation and metabolism. To this end, we studied adipose tissue-specific ADAM10 knock-out mice (aKO). While young, regular chow diet-fed aKO mice showed increased insulin sensitivity, following prolonged (33 weeks) high-fat diet (HFD) exposure, aKO mice developed obesity and insulin resistance. Compared to controls, aKO mice showed less inflammatory adipokine profile despite the significant increase in adiposity. In brown adipose tissue, aKO mice on HFD had changes in CD8+ T cell populations indicating a lesser inflammatory pattern. Following HFD, both aKO and control littermates demonstrated decreased adipose tissue pro-inflammatory macrophages, and increased anti-inflammatory accumulation, without differences between the genotypes. Collectively, our observations indicate that selective deletion of ADAM10 in adipocytes results in a mitigated inflammatory response, leading to increased insulin sensitivity in young mice fed with regular diet. This state of insulin sensitivity, following prolonged HFD, facilitates energy storage resulting in increased fat accumulation which ultimately leads to the development of a phenotype of obesity and insulin resistance. In conclusion, the data indicate that ADAM10 has a modulatory effect of inflammation and whole-body energy metabolism.


ADAM10 Protein , Adipose Tissue , Diet, High-Fat , Mice, Knockout , Animals , Male , Mice , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Adipocytes/metabolism , Adipose Tissue/metabolism , Amyloid Precursor Protein Secretases/metabolism , Diet, High-Fat/adverse effects , Inflammation/metabolism , Insulin Resistance , Membrane Proteins/metabolism , Membrane Proteins/genetics , Obesity/metabolism , Obesity/etiology , Phenotype
2.
PLoS One ; 19(5): e0298827, 2024.
Article En | MEDLINE | ID: mdl-38722949

Glutathione peroxidase 2 (GPX2) is a selenium-dependent enzyme and protects cells against oxidative damage. Recently, GPX2 has been identified as a candidate gene for backfat and feed efficiency in pigs. However, it is unclear whether GPX2 regulates the development of porcine preadipocytes and skeletal muscle cells. In this study, adenoviral gene transfer was used to overexpress GPX2. Our findings suggest that overexpression of GPX2 gene inhibited proliferation of porcine preadipocytes. And the process is accompanied by the reduction of the p-p38. GPX2 inhibited adipogenic differentiation and promoted lipid degradation, while ERK1/2 was reduced and p-p38 was increased. Proliferation of porcine skeletal muscle cells was induced after GPX2 overexpression, was accompanied by activation in JNK, ERK1/2, and p-p38. Overexpression methods confirmed that GPX2 has a promoting function in myoblastic differentiation. ERK1/2 pathway was activated and p38 was suppressed during the process. This study lays a foundation for the functional study of GPX2 and provides theoretical support for promoting subcutaneous fat reduction and muscle growth.


Adipocytes , Glutathione Peroxidase , MAP Kinase Signaling System , Animals , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Adipocytes/metabolism , Adipocytes/cytology , Swine , Cell Differentiation/genetics , Cell Proliferation , Adipogenesis/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology
3.
Cells ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38727299

The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.


Adipogenesis , Adipose Tissue, White , Aging , Obesity , Humans , Aging/pathology , Obesity/pathology , Obesity/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Adipocytes/metabolism , Adipocytes/pathology
4.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731807

Fat tissue-a vital energy storage organ-is intricately regulated by various factors, including circular RNA, which plays a significant role in modulating fat development and lipid metabolism. Therefore, this study aims to clarify the regulatory mechanism of sheep adipocyte proliferation and differentiation by investigating the involvement of circTIAM1, miR-485-3p, and its target gene PLCB1. Through previous sequencing data, circTIAM1 was identified in sheep adipocytes, with its circularization mechanism elucidated, confirming its cytoplasmic localization. Experimental evidence from RNase R treatment and transcription inhibitors highlighted that circTIAM1 is more stable than linear RNA. Additionally, circTIAM1 promoted sheep adipocyte proliferation and differentiation. Furthermore, bioinformatic analysis demonstrated a robust interaction between miR-485-3p and circTIAM1. Further experiments revealed that miR-485-3p inhibits fat cell proliferation and differentiation by inhibiting PLCB1, with circTIAM1 alleviating the inhibitory effect via competitive binding. In summary, our findings elucidate the mechanism through which circTIAM1 regulates Guangling Large-Tailed sheep adipocyte proliferation and differentiation via the miR-485-3p-PLCB1 pathway, offering a novel perspective for further exploring fat metabolism regulation.


Adipocytes , Cell Differentiation , Cell Proliferation , MicroRNAs , Phospholipase C beta , RNA, Circular , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Adipocytes/metabolism , Adipocytes/cytology , Cell Proliferation/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Sheep , Cell Differentiation/genetics , Phospholipase C beta/metabolism , Phospholipase C beta/genetics , Signal Transduction
5.
Nat Commun ; 15(1): 4052, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744820

Obesity has emerged as a prominent risk factor for the development of malignant tumors. However, the existing literature on the role of adipocytes in the tumor microenvironment (TME) to elucidate the correlation between obesity and cancer remains insufficient. Here, we aim to investigate the formation of cancer-associated adipocytes (CAAs) and their contribution to tumor growth using mouse models harboring dysfunctional adipocytes. Specifically, we employ adipocyte-specific BECN1 KO (BaKO) mice, which exhibit lipodystrophy due to dysfunctional adipocytes. Our results reveal the activation of YAP/TAZ signaling in both CAAs and BECN1-deficient adipocytes, inducing adipocyte dedifferentiation and formation of a malignant TME. The additional deletion of YAP/TAZ from BaKO mice significantly restores the lipodystrophy and inflammatory phenotypes, leading to tumor regression. Furthermore, mice fed a high-fat diet (HFD) exhibit decreased BECN1 and increased YAP/TAZ expression in their adipose tissues. Treatment with the YAP/TAZ inhibitor, verteporfin, suppresses tumor progression in BaKO and HFD-fed mice, highlighting its efficacy against mice with metabolic dysregulation. Overall, our findings provide insights into the key mediators of CAA and their significance in developing a TME, thereby suggesting a viable approach targeting adipocyte homeostasis to suppress cancer growth.


Adaptor Proteins, Signal Transducing , Adipocytes , Diet, High-Fat , Mice, Knockout , Tumor Microenvironment , YAP-Signaling Proteins , Animals , YAP-Signaling Proteins/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Diet, High-Fat/adverse effects , Transcription Factors/metabolism , Transcription Factors/genetics , Obesity/metabolism , Obesity/pathology , Humans , Verteporfin/pharmacology , Signal Transduction , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Disease Progression , Male , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Lipodystrophy/metabolism , Lipodystrophy/pathology , Lipodystrophy/genetics , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics
6.
Endocrinology ; 165(6)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38712392

Long-term ß-adrenoceptor (ß-AR) stimulation is a pathological mechanism associated with cardiovascular diseases resulting in endothelial and perivascular adipose tissue (PVAT) dysfunction. In this study, we aimed to identify whether ß-adrenergic signaling has a direct effect on PVAT. Thoracic aorta PVAT was obtained from male Wistar rats and cultured ex vivo with the ß-AR agonist isoproterenol (Iso; 1 µM) or vehicle for 24 hours. Conditioned culture medium (CCM) from Iso-treated PVAT induced a marked increase in aorta contractile response, induced oxidative stress, and reduced nitric oxide production in PVAT compared to vehicle. In addition, Iso-treated PVAT and PVAT-derived differentiated adipocytes exhibited higher corticosterone release and protein expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), an enzyme responsible for de novo synthesis of corticosterone. Macrophages exposed to Iso also exhibited increased corticosterone release in response to ß-AR stimulation. Incubation of Iso-treated PVAT and PVAT-derived differentiated adipocytes with ß3-AR antagonist restored aorta contractile function modulated by Iso-CCM and normalized 11ß-HSD1 protein expression. These results show that ß3-AR signaling leads to upregulation of 11ß-HSD1 in PVAT, thus increasing corticosterone release and contributing to impair the anticontractile function of this tissue.


11-beta-Hydroxysteroid Dehydrogenase Type 1 , Corticosterone , Isoproterenol , Rats, Wistar , Animals , Male , Rats , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Isoproterenol/pharmacology , Corticosterone/metabolism , Adrenergic beta-Agonists/pharmacology , Adipose Tissue/metabolism , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Adipocytes/metabolism , Adipocytes/drug effects , Receptors, Adrenergic, beta/metabolism , Oxidative Stress/drug effects , Nitric Oxide/metabolism , Culture Media, Conditioned/pharmacology
7.
Sci Rep ; 14(1): 10924, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740866

Bovine intramuscular fat (IMF), commonly referred to as marbling, is regulated by lipid metabolism, which includes adipogenesis, lipogenesis, glycerolipid synthesis, and lipolysis. In recent years, breeding researchers have identified single nucleotide polymorphisms (SNPs) as useful marker-assisted selection tools for improving marbling scores in national breeding programs. These included causal SNPs that induce phenotypic variation. MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that bind to multiple non-coding regions. They are involved in post-transcriptional regulation. Multiple miRNAs may regulate a given target. Previously, three SNPs in the GPAM 3' UTR and four miRNAs were identified through in silico assays. The aim of this study is to verify the binding ability of the four miRNAs to the SNPs within the 3'UTR of GPAM, and to identify the regulatory function of miR-375 in the expression of genes related to lipid metabolism in mammalian adipocytes. It was verified that the four miRNAs bind to the GPAM 3'UTR, and identified that the miR-375 sequence is highly conserved. Furthermore, it was founded that miR-375 upregulated the GPAM gene, C/EBPα, PPARγ and lipid metabolism-related genes and promoted lipid droplet accumulation in 3T3-L1 cells. In conclusion, these results suggest that miR-375 is a multifunctional regulator of multiple lipid metabolism-related genes and may aid in obesity research as a biomarker.


3' Untranslated Regions , 3T3-L1 Cells , Lipid Metabolism , MicroRNAs , Polymorphism, Single Nucleotide , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Lipid Metabolism/genetics , Cattle , Gene Expression Regulation , Adipocytes/metabolism , Adipogenesis/genetics
8.
Rev Invest Clin ; 76(2): 65-79, 2024.
Article En | MEDLINE | ID: mdl-38718804

UNASSIGNED: Excess body weight has become a global epidemic and a significant risk factor for developing chronic diseases, which are the leading causes of worldwide morbidities. Adipose tissue (AT), primarily composed of adipocytes, stores substantial amounts of energy and plays a crucial role in maintaining whole-body glucose and lipid metabolism. This helps prevent excessive body fat accumulation and lipotoxicity in peripheral tissues. In addition, AT contains endothelial cells and a substantial population of immune cells (constituting 60-70% of non-adipocyte cells), including macrophages, T and B lymphocytes, and natural killer cells. These resident immune cells engage in crosstalk with adipocytes, contributing to the maintenance of metabolic and immune homeostasis in AT. An exacerbated inflammatory response or inadequate immune resolution can lead to chronic systemic low-grade inflammation, triggering the development of metabolic alterations and the onset of chronic diseases. This review aims to elucidate the regulatory mechanisms through which immune cells influence AT function and energy homeostasis. We also focus on the interactions and functional dynamics of immune cell populations, highlighting their role in maintaining the delicate balance between metabolic health and obesity-related inflammation. Finally, understanding immunometabolism is crucial for unraveling the pathogenesis of metabolic diseases and developing targeted immunotherapeutic strategies. These strategies may offer innovative avenues in the rapidly evolving field of immunometabolism. (Rev Invest Clin. 2024;76(2):65-79).


Adipose Tissue , Inflammation , Metabolic Diseases , Obesity , Humans , Adipose Tissue/metabolism , Adipose Tissue/immunology , Obesity/immunology , Obesity/metabolism , Inflammation/immunology , Inflammation/metabolism , Metabolic Diseases/immunology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Energy Metabolism/physiology , Adipocytes/metabolism , Adipocytes/immunology , Lipid Metabolism/physiology , Animals , Homeostasis
9.
Development ; 151(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38713014

Lipid distribution in an organism is mediated by the interplay between lipoprotein particles, lipoprotein receptors and class B scavenger receptors of the CD36 family. CD36 is a multifunctional protein mediating lipid uptake, mobilization and signaling at the plasma membrane and inside of the cell. The CD36 protein family has 14 members in Drosophila melanogaster, which allows for the differentiated analysis of their functions. Here, we unravel a role for the so far uncharacterized scavenger receptor Bez in lipid export from Drosophila adipocytes. Bez shares the lipid binding residue with CD36 and is expressed at the plasma membrane of the embryonic, larval and adult fat body. Bez loss of function lowers the organismal availability of storage lipids and blocks the maturation of egg chambers in ovaries. We demonstrate that Bez interacts with the APOB homolog Lipophorin at the plasma membrane of adipocytes and trace the Bez-dependent transfer of an alkyne-labeled fatty acid from adipocytes to Lipophorin. Our study demonstrates how lipids are distributed by scavenger receptor-lipoprotein interplay and contribute to the metabolic control of development.


CD36 Antigens , Drosophila Proteins , Drosophila melanogaster , Fat Body , Lipid Metabolism , Ovary , Animals , Female , Ovary/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , CD36 Antigens/metabolism , CD36 Antigens/genetics , Fat Body/metabolism , Receptors, Scavenger/metabolism , Receptors, Scavenger/genetics , Cell Membrane/metabolism , Adipocytes/metabolism , Lipoproteins/metabolism
10.
JCI Insight ; 9(9)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38716728

The importance of the proper localization of most receptors at the cell surface is often underestimated, although this feature is essential for optimal receptor response. Endospanin 1 (Endo1) (also known as OBRGRP or LEPROT) is a protein generated from the same gene as the human leptin receptor and regulates the trafficking of proteins to the surface, including the leptin receptor. The systemic role of Endo1 on whole-body metabolism has not been studied so far. Here, we report that general Endo1-KO mice fed a high-fat diet develop metabolically healthy obesity with lipid repartitioning in organs and preferential accumulation of fat in adipose tissue, limited systematic inflammation, and better controlled glucose homeostasis. Mechanistically, Endo1 interacts with the lipid translocase CD36, thus regulating its surface abundance and lipid uptake in adipocytes. In humans, the level of Endo1 transcripts is increased in the adipose tissue of patients with obesity, but low levels rather correlate with a profile of metabolically healthy obesity. We suggest here that Endo1, most likely by controlling CD36 cell surface abundance and lipid uptake in adipocytes, dissociates obesity from diabetes and that its absence participates in metabolically healthy obesity.


Adipose Tissue , CD36 Antigens , Diet, High-Fat , Mice, Knockout , Obesity , Animals , Female , Humans , Male , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , CD36 Antigens/metabolism , CD36 Antigens/genetics , Diet, High-Fat/adverse effects , Glucose/metabolism , Lipid Metabolism/genetics , Mice, Inbred C57BL , Obesity/metabolism , Obesity/genetics
11.
Development ; 151(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38722097

Bez is a Class B scavenger receptor in Drosophila that is yet to be characterised. In a new study, Margret Bülow and colleagues uncover a role for Bez in mobilising lipids from Drosophila adipocytes into the ovary for oocyte maturation. To find out more about the people behind the paper, we caught up with first author, Pilar Carrera, and corresponding author, Margret Bülow, Group Leader at the University of Bonn.


Drosophila Proteins , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Female , Drosophila , History, 21st Century , Humans , Adipocytes/cytology , Adipocytes/metabolism , History, 20th Century , Developmental Biology/history , Oocytes/metabolism , Oocytes/cytology , Drosophila melanogaster , Ovary/metabolism , Ovary/cytology
12.
Sci Rep ; 14(1): 10053, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698047

Type 2 diabetes mellitus is a worldwide public health issue. In the globe, Egypt has the ninth-highest incidence of diabetes. Due to its crucial role in preserving cellular homeostasis, the autophagy process has drawn a lot of attention in recent years, Therefore, the purpose of this study was to evaluate the traditional medication metformin with the novel therapeutic effects of cinnamondehyde on adipocyte and hepatic autophagy in a model of high-fat diet/streptozotocin-diabetic rats. The study was conducted on 40 male albino rats, classified into 2 main groups, the control group and the diabetic group, which was subdivided into 4 subgroups (8 rats each): untreated diabetic rats, diabetic rats received oral cinnamaldehyde 40 mg/kg/day, diabetic rats received oral metformin 200 mg/kg/day and diabetic rats received a combination of both cinnamaldehyde and metformin daily for 4 weeks. The outcomes demonstrated that cinnamaldehyde enhanced the lipid profile and glucose homeostasis. Moreover, Cinnamaldehyde had the opposite effects on autophagy in both tissues; by altering the expression of genes that control autophagy, such as miRNA 30a and mammalian target of rapamycin (mTOR), it reduced autophagy in adipocytes and stimulated it in hepatic tissues. It may be inferred that by increasing the treatment efficacy of metformin and lowering its side effects, cinnamaldehyde could be utilized as an adjuvant therapy with metformin for the treatment of type 2 diabetes.


Acrolein , Acrolein/analogs & derivatives , Adipocytes , Autophagy , Diabetes Mellitus, Experimental , Liver , Metformin , Animals , Acrolein/pharmacology , Acrolein/therapeutic use , Autophagy/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Rats , Adipocytes/drug effects , Adipocytes/metabolism , Metformin/pharmacology , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Streptozocin , Blood Glucose/metabolism , TOR Serine-Threonine Kinases/metabolism
13.
Anim Sci J ; 95(1): e13951, 2024.
Article En | MEDLINE | ID: mdl-38703069

Intramuscular fat (IMF) is a crucial determinant of meat quality and is influenced by various regulatory factors. Despite the growing recognition of the important role of long noncoding RNAs (lncRNAs) in IMF deposition, the mechanisms underlying buffalo IMF deposition remain poorly understood. In this study, we identified and characterized a lncRNA, lncFABP4, which is transcribed from the antisense strand of fatty acid-binding protein 4 (FABP4). lncFABP4 inhibited cell proliferation in buffalo intramuscular preadipocytes. Moreover, lncFABP4 significantly increased intramuscular preadipocyte differentiation, as indicated by an increase in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARG), CCAAT enhancer binding protein alpha (C/EBPα), and FABP4. Mechanistically, lncFABP4 was found to have the potential to regulate downstream gene expression by participating in protein-protein interaction pathways. These findings contribute to further understanding of the intricate mechanisms through which lncRNAs modulate intramuscular adipogenesis in buffaloes.


Adipocytes , Adipogenesis , Buffaloes , Cell Differentiation , Cell Proliferation , Fatty Acid-Binding Proteins , PPAR gamma , RNA, Long Noncoding , Animals , Buffaloes/genetics , Buffaloes/metabolism , Adipogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Differentiation/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Gene Expression , Cells, Cultured , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Food Quality
14.
Nat Commun ; 15(1): 3769, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704393

Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.


Adipocytes , Bone Marrow , Leptin , Osteogenesis , Receptors, Estrogen , Animals , Osteogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Mice , Leptin/metabolism , Leptin/genetics , Bone Marrow/metabolism , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Mesenchymal Stem Cells/metabolism , Obesity/metabolism , Obesity/pathology , Obesity/genetics , ERRalpha Estrogen-Related Receptor , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Female , Male , Mice, Inbred C57BL , Signal Transduction , Bone Marrow Cells/metabolism , Mice, Knockout
16.
Mol Genet Genomics ; 299(1): 48, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700639

Intramuscular fat (IMF) is a critical factor in beef quality. IMF is mainly distributed between muscle fibres and its accumulation can affect the marbling and meat quality of beef. IMF formation and deposition is a complex process and in recent years a group of non-coding RNAs (ncRNAs), known as circRNAs, have been discovered to play an important role in regulating intramuscular fat deposition. CircRNAs form a covalent loop structure after reverse splicing of precursor mRNAs. They can act by adsorbing miRNAs, thereby reducing their repressive effects on downstream target genes. Based on high-throughput sequencing of circRNAs in intramuscular fat of Qinchuan and Japanese black cattle, we identified a novel circSSBP2 that is differentially expressed between the two species and associated with adipogenesis. We show that circSSBP2 knockdown promotes bovine intramuscular preadipocyte proliferation, whereas overexpression inhibits bovine intramuscular preadipocyte proliferation. We also show that circSSBP2 can act as a molecular sponge for miR-2400 and that miR-2400 overexpression promotes bovine intramuscular preadipocyte proliferation. Furthermore, N-myc downstream-regulated gene 1 (NDRG1) was identified as a direct target gene of miR-2400, and NDRG1 interference promoted the proliferation of bovine intramuscular preadipocytes. In conclusion, our results suggest that circSSBP2 inhibits the proliferation of bovine intramuscular preadipocytes by regulating the miR-2400/NDRG1 axis.


Adipocytes , Adipogenesis , Cell Cycle Proteins , Cell Proliferation , Intracellular Signaling Peptides and Proteins , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Cattle , Adipocytes/metabolism , Adipocytes/cytology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Adipogenesis/genetics , RNA, Circular/genetics , Gene Expression Regulation
17.
J Diabetes Res ; 2024: 5511454, 2024.
Article En | MEDLINE | ID: mdl-38736904

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Adipogenesis , Adipose Tissue, Brown , Adipose Tissue, White , Diet, High-Fat , Lipase , Mice, Inbred C57BL , Animals , Mice , Male , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Lipase/metabolism , Lipase/genetics , Obesity/metabolism , Lipolysis , Uncoupling Protein 1/metabolism , Fibroblast Growth Factors/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Adipocytes/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Lipogenesis , Acyltransferases
18.
Anim Biotechnol ; 35(1): 2346223, 2024 Nov.
Article En | MEDLINE | ID: mdl-38739480

Adipocyte play an important role in human health and meat quality by influencing the tenderness, flavor, and juiciness of mutton It has been shown that neuron-derived neurotrophic factor (NENF) is closely related to energy metabolism and adipocyte differentiation in bovine. However, the role of NENF in the goats remains unclear. The aim of this study was to detect the expression of NENF in goat subcutaneous and intramuscular adipocytes, temporal expression profiles of the NENF, and overexpressed NENF on the differentiation of different adipocytes. In this study, PCR amplification successfully cloned the goat NENF gene with a fragment length of 521 bp. In addition, the time point of highest expression of NENF differed between these two adipocytes differentiation processes. Overexpression of NENF in intramuscular and subcutaneous adipocytes promoted the expression levels of differentiation markers CEBPß and SREBP, which in turn promoted the differentiation of intramuscular and subcutaneous adipocytes. This study will provide basic data for further study of the role of goats in goat adipocyte differentiation and for the final elucidation of its molecular mechanisms in regulating goat adipocyte deposition.


Adipocytes , Cell Differentiation , Goats , Animals , Goats/genetics , Adipocytes/cytology , Adipocytes/metabolism , Cell Differentiation/physiology , Subcutaneous Fat/cytology , Subcutaneous Fat/metabolism
19.
Nutrients ; 16(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38732509

Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.


3T3-L1 Cells , Adipocytes , Adipogenesis , Eugenol , Mitosis , Reactive Oxygen Species , Animals , Adipogenesis/drug effects , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Mitosis/drug effects , Eugenol/pharmacology , Eugenol/analogs & derivatives , Reactive Oxygen Species/metabolism , Cell Differentiation/drug effects , PPAR gamma/metabolism , Cell Proliferation/drug effects , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Lipid Metabolism/drug effects , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Antioxidants/pharmacology
20.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38702075

Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.


Adipocytes , Adipogenesis , Body Fat Distribution , Humans , Adipocytes/metabolism , Male , Female , Adipogenesis/genetics , Body Mass Index , Adult , Gene Regulatory Networks , Middle Aged , Bayes Theorem , Waist-Hip Ratio , Adipose Tissue/metabolism , Wnt Signaling Pathway/genetics , Gene Expression Regulation/genetics , Systems Biology/methods
...